

Liutex Validation by Experiments

Virtual Short Course

Liutex and Third Generation of Vortex Definition and Identification

Dr. Xiangrui DONG, Prof. Dr. Xiaoshu CAI

School of Energy and Power Engineering
University of Shanghai for Science and Technology

Turbulence

Turbulent boundary layer

Coherent structures make a significant contribution to the time averaged statistics of the flow.

Generation mechanism

1. Developed from perturbation wave

2. Quasi-streamwise vortex developed into hairpin

3. Auto generation hairpins (Secondary /Tertiary)

4. Interaction between hairpins & hairpin packets

New ideas on vortex generation and self-maintenance mechanism in turbulent boundary layer?

Flow field measuring method

Hot-Wire (Film) Anemometer (HWFA)

Laser Doppler Velocimetry (LDV)

Tracer particle flow visualization technology

smoke hydrogen bubble dye

Single-Frame and Long-Exposure (SFLE)

etc.

Particle Image Velocimetry (PIV)

2D PIV Tomographic PIV

Holographic PIV

Particle Tracking Velocimetry (PIV)

Particle Streak Velocimetry (PSV)

Source: D. R. sabatino et al.

Flow field measuring method

X

X

 $\sqrt{}$

HWFA

LDV

flow

visualiz

ation

SFLE

PIV

Measurements

Hot-Wire (Film) Anemometer (HWFA)

Laser Doppler Velocimetry (LDV)

Tracer particle flow visualization technology

hydrogen bubble smoke dye etc.

Single-Frame and Long-Exposure (SFLE)

Particle Image Velocimetry (PIV)

2D PIV Holographic PIV

> Our work

Tomographic PIV

etc.

Moving-Single-Frame and Long-Exposure (MSFLE)

Moving-Particle Image Velocimetry (MPIV)

Ξ)	M-SFLE	√	√	√	√	low
	M-PIV	√	√	×	√	high

methods globality contactless qualitative quantitative instantaneity

X

X

X

×

X

low

high

×

 $\sqrt{}$

 $\sqrt{}$

✓ Non-contact; ✓ Globality; ✓ Qualitative; ✓ Quantitative (high accuracy)

Measuring system & Equipment

Measuring system

Experimental setup

Circulating water tunnel

Item	SFLE	PIV		
Tracer particle	PSP (5um)	PMM (10μm)		
Exposure time	100~200ms	0.5ms~5ms		
Laser	Wavelength 450nm, Power 4W			
XIMEA camera		Pixel size 4.8um, Resolution 1280×1024		
Lens	M = 0.14	M = 0.13		
Tunnel parameters	Cross area = 80×80 mm x = 400mm ~ 1300 mm $\delta = 10$ mm ~ 20 mm, $Re_{\theta} = 97 \sim 194$			
Flow condition	Moving speed 80~100 mm/s Flow rate 1.6 m ³ /h			

Light sheet arrangement

(b) Streamwise-spanwise direction

(c) Inclined to the flow direction (angle of inclination is set as 135°)

(d) Inclined to the flow direction (angle of inclination is set as 53°)

Trajectory tracking of a hairpin head generation by Moving-SFLE

 $(U^* = 0.9 \text{ exposure time } 100 \text{ ms} \text{ and the frame rate } 9.995 \text{ fps})$

> Strong Q2 and Q4 events induce the spanwise shear to connect the streamwise vortices in downstream and then develop into a hairpin vortex.

Spatio-temporal evolution of a hairpin head generation by Moving-PIV

Process of vortex generation and evolution by u (up), $|\omega|$ (bottom)

Basic idea: Vorticity decomposition

$$\vec{V} \times \vec{V} = \vec{R} + \vec{S}$$

$$\vec{R} = R \cdot \vec{r} \qquad \nabla \vec{V} \cdot \vec{r} = \lambda_r \vec{r}$$

$$R = \vec{\omega} \cdot \vec{r} - \sqrt{(\vec{\omega} \cdot \vec{r})^2 - 4\lambda_{ci}^2}$$

- Strength *R*: It is determined in the plane normal to the direction of the real eigenvector.
- Direction \vec{r} : The real eigenvector of the velocity gradient tensor $\nabla \vec{V}$.

- Spatio-temporal evolution of a hairpin head generation by Moving-PIV
- > Quantitative statistics based on Liutex integration
- Proposed a statistical approach for 2D/3D experimental data.

$$R_{\text{Int}} = \int_{\Delta S} R dS, S = \int_{\Delta S} \frac{R}{|R|} dS$$

 $R_{\rm Int}$ is Liutex integral ΔS is the area where R > 0

Temporal distributions of R_{Int} and ΔS during the whole process of vortex generation and evolution

- I synchronous linear segment (SL)II absolute enhancement segment (AE)
- III absolute diffusion segment (AD)
- IV skewing dissipation segment (SD)

Process of vortex generation and evolution by u (up), $|\omega|$ (center) and R (bottom)

Trajectory tracking of a whole hairpin structure by Moving-SFLE

- A complete hairpin containing head, neck and legs is captured by MSFLE.
- Spanwise asymmetry is the result of asymmetric secondary and downstreamhairpin vortices generated from the initial symmetric vortex structure.

Spatio-temporal evolution of a whole hairpin structure by Moving-PIV

• A. Hairpin regeneration induced by interaction between hairpins & packets

> Spanwise shear instability caused by the collision between the hairpin vortex packets

B. Auto generation hairpins (the young generation induced by the old)

B. Auto generation hairpins (the young generation induced by the old)

> The self-induced motion is pointed up and backward, resulting in further generation of hairpin vortex. The ramp angle is the fundamental characteristics of the linear growth of hairpins.

• C. Merging of hairpin vortices in a packet

 $t^* = 76.8$: Secondary hairpin S appears;

 $t^* = 81.6$: A approaches S;

 $t^* = 86.4$: A and S merge into B;

 $t^* = 92.8$: A new vortex D comes out under

the shear layer.

How to determine the energy interchange during the merging process?

➤ Hairpin vortices in a packet may merge into a new hairpin vortex once their distance is close enough.

• C. Merging of hairpin vortices in a packet

 \succ The vortex structure with less strength will be entrained into the vortex structure with greater strength. The strength of a newly generated vortex is about the sum of the two (A+B).

 Turbulence self-sustaining theory based on the mechanism of mother and child hairpin vortices

- ➤ A parent hairpin vortex with sufficient intensity may induce multiple generations of hairpin vortices, or may induce secondary hairpin vortices continuously.
- ➤ The primary hairpin vortices will induce a new generation hairpin vortex in its growth period, and contribute energy and increase the rotation intensity through decaying themselves. This cycle continues to maintain the development of turbulence.

Conclusion

- The Liutex integral is proposed for statistical analysis of the evolution of vortex intensity and size.
- Three mechanisms of the hairpin vortex regeneration:
 - > A. Hairpin regeneration induced by interaction between hairpins & packets
 - > B. Auto generation hairpins (the young generation induced by the old)
 - **C.** Merging of hairpin vortices in the packets
- Turbulence self-sustaining mechanism in boundary layer:
 - **Based on the mechanism of mother and child hairpin vortices**

Seminar 2022

30th November, 2022, online

Thanks!

