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1. Helmholtz (Cauchy-Stokes Tensor)
Decomposition

H e I m h (@) |tZ DeCO m pOSitiO N (Wlkl https://en.wikipedia.org/wiki/Helmholtz decomposition)

The Helmholtz decomposition states that a vector field (satisfying appropriate
smoothness and decay conditions) can be decomposed as the sum of the form
—@ + V x A where ¢ is a scalar field called "scalar potential", and 4 is a vector field,

called a vector potential. (Or potential part and vorticity part —-misunderstood as
rotation)

In fluid dynamic textbooks: Helmholtz fluid particle velocity decomposition is v =
Translation + Deformation + Rotation which is equivalent to Cauchy-Stokes
Tensor DecompositionVv= A+ B (Vorticity V X v is considered as rotation)

Translation Deformation Rotation
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1. Helmholtz (Cauchy-Stokes Tensor)
Decomposition

In classical fluid kinematics, the the velocity gradient tensor 1s decomposed into a
symmetric part and an anti-symmetric part

Vv=A+B

0 1/0v . du 1 /0w . Ju\T
2 Gty G
0x 2 \0x 0Jy 2 \0x 0z
_1l(ps 4 paT) — l(a_” a_u) v l(a_W @)
A—Z(VU+VU )_ 2 6x+6y dy 2 \ 0y 0z
1 /0w . Ju 1 /0w _ Ov ow
1 I
2 \0x 0z 2 \dy 0z 0z |
0 Ly 10w ouy
2\0x 0Jy 2 \0x 0z
_l(ps_ T = _l(@_a_u) l(a_W_%)
B= 2 (\717 Vv ) o 2\dx OJy 0 2 \dy 0z
i(2e_gw) 1w o) 0
| 2 \0x 0z 2 \ 0y 0z

Traditionally, people think A represents deformation and B for rotation — Unfortunately, NO
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Liutex — Mathematical Definition of Vortex

Liutex represent fluid rotation, but not vorticity
R = R?

7 is real eigenvector of (V1)

R =(w, 1) — \/(B, 7)2 — 422 (Wang, Gao, Liu, 2019)

where w is the vorticity vector, 7 is the Liutex direction
vector, and A.; 1s the imaginary part of the complex
eigenvalue of V.

UNIVERSITY OF TEXAS g~§ ARLINGTON



Problems with Cauchy-Stokes (CS)
Decomposition

(1) Since vorticity cannot represent fluid rotation, the
vorticity tensor 1s a mixture of rigid rotation and
non-rotating anti-symmetric shear.

(2) The symmetric strain-rate tensor 1s a mixture of
stretching and symmetric shear (diagonal and off-
diagonal elements are dependent on coordinates)

(3) The CS decomposition 1s dependent on the
selection of coordinate system and 1s therefore not
invariant (stretch 1s mixed with shear)
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2. Principal Coordinate System and Principal

to make Z parallel to T

Matrix
oV 0 .
Y (d) wW=Q'VuQ

4 Tx _Q11 Q12 Q13-

QT 1y | = Q21 €22 Q23

1, A
X | foe=evis U U g7 v
p X oY 0X
T — |9V oV ov
0, Vv)" = ax  ay 0 X
I/ oW oW oW aw
ax oy oazd Llax
der  —2R 0]

(VVe)" = “R+e Ao O
| § n Ay

Ty 0
T'y - O
Ty 1
oU -
3y 0
oV
> 0
oW
aw

- Principal Matrix

Tensor is unique but matrix is dependent on coordinates and not unique. Try to find a
unique coordinate system and then unique matrix — Principal Matrix
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2. Tensor Principal Decomposition in

Principal Coordinates (Unique)

Principal tensor matrix

(We need a unique matrix for the velocity gradient tensor)

(V7))

Y

v

The principal tensor matrix should be VW =

R
Acr —3 0
— |R
_ Py + € Acr 0
L S$ N Ay
Principal decomposition
) R ]
ACT E t+e€ € 0
R = |—R/2
_5 Acr n 0/
| 0 0 A
Shear 1s not symmetric!
Our previous decomposition
T 0O —-R/2 0
(VW) =[R2 0 o]+
0 0 0
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2. Tensor Principal Decomposition in
Principal Coordinates (Unique)

Principal decomposition

_ R ;
) Acr E + € € 0 R/Z 0 -ACT 0 0 ]
VWw=| R h = [—R/Z 0 O0f[+]0 A, O
_E cr n 0 0 0 0 0 /17‘
0 0 A ' '
=R+ SC+S

7V = Rotation (Liutex)+Stretching(Compression)+Shear

It 1s unique and physical meaning 1s very clear.
Totally different from Cauchy-Stokes decomposition

Koloar 2007 and Li et al. 2014 have similar 1deas to decompose the velocity gradient tensor
Kolat, V., Vortex identification: New requirements and limitations [J]. International Journal of Heat and Fluid Flow, (2007), 28(4): 638-652.
Li, Z., Zhang, X., He., F., Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor.

Acta Physics Sinica, 2014, 63(5): 054704, in Chinese
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3. New Fluid Kinematics

Principal coordinates are different at each point, and we must come back to
the original xyz coordinate system:

Vv = QP(R)PTQT + QP(S)PTQT + QP(SC)PTQT =R+ S + SC

Q11 Q12 7y
Assume QP = [Q21 0227y

| 031 Q32 73]

Ty Q11 Q12 Q3] [T 0
T'y] = [ Q21 Q22 Q23 lry] = lO]
T 1

PTQT
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3. New Fluid Kinematics

Transfer R bask to the original xyz-system

0 0
In the principal coordinate, R=| _R 4
2
L0 0 O
In the original xyz coordinate,
[ R, Ry, T
0 —Z _ X
2 2
= R R
R=QPRPTQ"=|-= o0 =
By _R
L 2 2

R is Galilean invariant and easy to transfer
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3. New Fluid Kinematics

Transfer SC (Stretch and Compression) back to the xyz system

In the original xyz coordinate, the stretching (compression) part can be obtained by anti-

QP rotation
A. 0 0
SC = QP(SC)PTQT —gp| 0 2, 0|pTQl =
0 0 A
Aer O 0 0 O 0
QP{|0 4, O[+][0 O PTQT
0 .| |0 0 A -—
1 0 O Q11 Q12 Tx 0 0 0 Q11 Q12 Q13
=2+QP[0 1 0|PTQT+|[Q21 Q227 |0 O 0 Q21 sz Q23
0 1 Q31 Q327 |0 0 A — gy
Aer O 0 Q11 Q127%|| 0 0 O Ty Txly TxTy
=0 Ay O |+ —2,4)|0Q210227|0 0 O cr 0 '*'(/1 de) | Ty 12 TyTy
0 0 Ay Q31 Q3272 [™x Ty Tz Ty Tply Tp°
Q11 Q12 T Q11 Q12 Q13
Because QP = Q21 Q22 13y |and PTQT = | Q21 Q22 Q23|, 04, Q,, Q3 are orthogonal
Q3103213 n Ty I
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3. New Fluid Kinematics

~ —~—

Vi =R+S+S

S=Vvv —R-SC
The shear part of the velocity gradient tensor 1s

ou  Jdv Ow] - R, Ry 7

- = 0 2z _ Y - 2 -
ox 0x 0x 2 2 Aer 0 0 ™ Tly TxTy
=_|ou a9v ow R, Ry 2
= E E E —|73 0 S| 0 Acr 01— (/17* _ Acr) Wy Ty” Tyl
gz 0z 0z- -2 2

ou ov R, dw Ry

5 axR axa 2 aax Rz [ Aer + (/11* _ Acr)rxz (/11* o Acr)rxry (/17* o Acr)rxrz
u 1% w
= @ + 72 @ E - 795 - (/17* - Acr)ryrx Acr + (/17* - Acr) ryz (/17* - Acr) ryTy
ou Ry v Rx ow i (/11* - Acr)rzrx (/11” - Acr)rzry Acr + (/11” - Acr)rzz i

—_ _|_ —_—
dz 2 0z 2 0z

ou Jdv ow 1
~ ~ N —_— _ lax = ax| |3 0 0
IfR =0, $=Vv — SC - Non-vortex areas =3 ﬂlo ler 0}

ay oy
ou gv dwl g 0 Ztr
3

0z

ARLINGTON

z

UNIVERSITY OF TEXAS ‘“"




3. New Fluid Kinematics

Principal coordinates are different at each point and we must come back to

the original xyz coordinate system:
Vv = QP(R)PTQT + QP(S)PTQT + QP(SC)PTQT =R+ S + SC

_O R, Ry
2 2
R=QRQ"=|-% 0 =
B _Re
2 2 .
Aer O 0 e’ Ily TxTy
SC=|0 Ay O[+@ -2 rnnn? nn
0 0 A Tl TpTy Ty
[ du ov R, /2 ow - /2'
3 0x 0x 3 ‘ aax g Aer + (Ap = Aerdr® (A — Acr)rxry (A — Aer )11y
~ u v w
S = E + RZ/Z E E - Rx/z - (/17* - Acr)ryrx Acr + (/17” - )lcr) 7"yz (Ar - Acr) ryTy
ou R /2 ov + R/ ow (/11” - Acr)rzrx (/11” _ Acr)rzry Acr + (/17” - )lcr)rzz
L0z v/ 0z x/ 0z

See our paper “New Fluid Kinematics”, JHD, Springer Online First, https://link.springer.com/journal/42241
http://www.jhydrodynamics.com Journal of Hydrodynamics, May 11, 2021 https://doi.org/10.1007/s42241-021-
0037-5
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vy, The University of Texas

§ WNAIRNGRI Vorticity Decomposition Vx ) = R+ S

Vorticity Decomposition can be done by vorticity tensor decomposition in
principal coordinates:

R € ¢&7 i} € &7
0 2%3 3 0o & o 0 3 3
B = _R_E 0 M =|=r i + = o 2 =R+ VS, both anti — symmetric
|l 2 2 2| > 0 O 2 2| ! y
~¢ 21 ol Lo ool | =2 -1 g
2 2 - i 2 2 i

B-dl=dl x(VxV)=dl xR+dl xS =dl x(R+S)

Because 4] is arbitrarily selected, then we have
VxV =R+S

The vorticity vector is not vortex vector and must be decomposed to vortex
vector (Liutex) and non-rotational anti-symmetric shear.

—_— .

VXxP=R+S in original Xyz coordinates since both vorticity and Liutex are Galilean invariant



(Rotation or vortex)

Fig. 3 Illustration of vorticity vector decomposition of Point A.

Liut

Fig. 4 Illustration of vorticity vector decomposition of Point B.

Vorticity mainly represents shear with small part as vortex/Liutex 16



New UTA R-NR Tensor Decomposition

Acr P € E
VW =|_R A.. 71 |= R+ NR inprincipal coordinate
2
0 0 A
0 R/2 0
R=([-R/2 0 0| -Rigid Rotation
0 0 0
Aer €%
NR=|0 A, 7n| — No Rotation (more
0, 0 A

general for both vorteX and non-vortex points

oU v . .
, § =-,.N=—",A —real eigenvalue, A..-real part of the complex eigenvalue

In laminar boundary layer R=0, but maybe 1, # A, # 1.,
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New UTA R-NR Tensor Decomposition in

the xyz coordinate system

()" =

(NR)"

v

dv

dy
v

0z

ou

0z
ov

0z
ow

0z |

N =
|
x
N

R

R, O
—R, R

0 —R, R,

_Rx

R
2°Y 0z

ou 1

NR part satisfies Stokes assumption, not R-part which cannot be isotropic
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4. Divergence of a Tensor

Divergence of velocity gradient

V- (Vo) ([a ' oy 5

V- ()] =

Forlncompre55|ble flow: V- (V)"

Useful for understanding fluid dynamics governing equations:

For incompressible flow:
V-Vo=V-Vi+ V- (V)T=

V-VB=V-VB—V- (VH)T=

dJu oOdu  0du’
dx 0y 0z
v 0dv Ov
ax 9y oz
ow OJdw Jdw

| dx OJdy 0z

—tr|=Vtr =V(V: )

=0

V- [VB +(VHT]
V- [VB — (V)]

[0%u . 0%v 0°w ]
0x%2 = 0Jdydx  0zox
0’°u . 0%v _ 0*w
dxdy  0y%2 = 0zdy
0%u 0%v | 0%w

| 0x0z 0ydz  0z2]

- Strain (symmetric)
- Vorticity (anti-symmetric)

rd (du
ax(ax+ay+

0 (du

ay (ax + dy + az)
d (ou
_£(6x+6y+

Same to use strain (6 entries in N-S) or vorticity (3 entries in my new governing equations)
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5. Strain-Based Navier-Stokes Equations

The original Navier-Stokes equations can be written as

d(pv > > Pt 2 - - -

5>tV (099) = pf = Vp — SVU(V.D)] + (V- [u(V5 + (VO

1. NS does not have vorticity terms which are important for turbulence research

2. Strain and stretching terms (diagonal and off-diagonal terms) are not Galilean
invariant and strongly dependent on coordinates

3. Physical meaning of diagonal and off-diagonal elements are not clear

Since V - (V)T = V(V - ¥), the new governing equation is

d(pv) o 2 4 - = o
og TV (VD) = pf —Vp + 2 V[u(V.D)] + (V- [u(VD - (V)"
1. It has vorticity terms only (no symmetric strain)
2. It only has three anti-symmetric off-diagonal elements (computation is half)
3. The physical meaning of off-diagonal elements are anti-symmetric shear
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6. Vorticity-Based New Governing Equations

Mathematical Foundation

Theorem 1: V- (Vv)T = V(V-¥) - Easy to prove (see Liu & Liu 2021)
Corollary 1: Velocity gradient, strain, and vorticity are transferable.

V- [u(V3 + (VB)D] = V- [u(V5 — (VH)T)] + V2u(V - B) = V- uVi + V(V - D)

For incompressible flow: V-% =0, V- (V®)T=0

Corollary 2: V - [u(V¥ + (V&)1 =V - [u(V¥ — (VB)T)] = V- uVv

Symmetric strain and anti-symmetric vorticity tensors are equivalent for incompressible
flow, but need one divergence term for interchange in compressible flow
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6. Vorticity-Based New Governing Equations

The original Navier-Stokes equations assume:
1. Strain is symmetric
Stress is proportional to strain (Stokes assumption)

Both strain and stress are symmetric

> » N

There 1s no role of vorticity

The new governing equations assume
1. Stress 1s proportional to vorticity
2. Both vorticity and stress are anti-symmetric

3. There is no role of symmetric strain. (actually both strain and vorticity have roles)

As shown below, they are equivalent.
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6. Vorticity-Based New Governing Equations

The viscous terms are changed from symmetric to anti-symmetric and six

elements become three elements:

0 w, —w,]
Vo— (V) =] —w, 0 w,
Wy —wx 0

The stresses in the original NS equation 1s

. ou;
Tij=.u(aul+ u;)_E‘u Ouk i,j, k=123,

0x j 0x; 3 L 0xy ’
with six independent elements because it 1s symmetric

In the new governing equation,

N L P S R
Tl] _H ax] axl 3.“’ lj axkl l)]) - L& )l ]

with three independent elements because it 1s anti-symmetric
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6. Vorticity-Based New Governing Equations

For incompressible flow,
V- (V)T =V(V-v) =0,

The original NS equation is

%f) + V- (pBD) = pf — Vp + {V - [u(VD + (V&))]}"

The new governing equation is

d(pv)
dt

+ V- (pv¥) = pf— Vp +{V- [u(Vy — (VO)DHIY

Note that V¥ has 9 terms, Vv + (V¥)T has 6 terms, V¥ — (V©)Thas 3 terms only (save half)
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6. New Governing Equations —Test Cases

Computational Results (2-D back step laminar flow)

= Re=800

main recirculation region length X1/b, M=0.01
12

ne'qun —'.—
11 original —dh—
Armally test o
9 L
8
g 1t
54
6 |
5
4L
3
2

100 200 300 400 500 600 700 800
Re

The computational results by the new
governing equations are almost same
as by Navier-Stokes.
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6. New Governing Equations — Test Cases

Computational Results — Turbulent Flow in an S-Duct

Starboard side pressure distribution, low mass rate

T
original, Uri

newFD,. Uri
¢.94 toriginal,. 55T ——
newFD,. S5T

AGARD CFD i
0.92 | experiment @ I S—

T oo.ss e
;ﬁ "\ 77777777777 /

Engine
face, fix
massflow

. 7d
M=0.21 & joren \/
0.84 &
2 0.82
starboard . ] .
e 0.8
T 0.78
(o] 100 200 300 400 500

¥ (mm)

The computational results by the new
governing equations are almost same
as by Navier-Stokes.
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Some 1deas on governing equations of fluid dynamics

As V¥ = R + S + SC, we should consider forces produced by rotation and stretch

~-R*4 0 0
FMH 0 -R/4 0 ]Jr

2

o B Ry R
2

—l|nr L

_R2/4 0 0 0 —R2/4 nr, LT, 7
(i, =m)3| 0 A, O |+(4 -4, )| rr 1 rrle+ Note that Hye = U here
0 0 0 0 4 rr. nr,
1 r
+(ﬂ2—y4) 0 A, 0 |+pu, 5(VV+VV )" (v b
(19) 0 0 A 2

New governing equations for fluid dynamics at vortex points (non-rotational points are similar)

d(pv)

pd—:=V-F+pf

2
+ V- (pvv) = pf —Vp — §V[M(V- V)] +

‘ ot
T —_ —_
Ve [u(Vo+ (Vo) )]+ V- (F; + Fy)
- - (20)
~-R*/4 0 0 R> RR RR 2, 0 0 (i -2) R® RR, RR
m 0 -R4 0 L RR. R RR (6 = ) {0 A, 0 }R— RR. R RR
0 0 -R/4 RR, RR R 0 0 2, RR, RR, R

F.is produced by rotation andF, is produced by stretch
C. Liu, New ideas on governing equations of fluid dynamics. J Hydrodyn 33, 861-866 (2021);

https://doi.org/10.1007/s42241-021-0050-
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Conclusions

. Velocity gradient tensor is unique, but corresponding matrix is countless.
. We need a unique coordinate system (Principal Coordinate System) to get a
unique Principal Matrix

. Principal decomposition is unique VW =R+SC+S =Rotation+Stretch+Shear)

4. Principal decomposition can be done in the original Cartesian coordinates to
establish the new fluid kinematics

5. Stress calculated by velocity gradient, strain or vorticity is equivalent

6. Velocity gradient has 9 elements, strain has 6, but vorticity only has 3 (anti-
symmetric)

7. The new governing equation by vorticity i1s Galilean invariant, simpler, and has
clear physical meaning.

8. The new governing equation has vorticity (NS does not have) which can be

further decomposed to rigid rotation and pure anti-symmetric shear. These new

1deas may be useful for turbulence research.

N =

W
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Thank youl!



