UNIVERSITY OF TEXAS ARLINGTON

Mathematics Foundation of Liutex

Lecture 2 of Liutex Short Course

Chaoqun Liu
University of Texas at Arlington, Arlington, Texas, USA

Presented for Online Liutex Short Course

December 16, 2022

Outlines

I. My Confusions
II. Vector, Tensor and Matrix
III. Tensor Operation and Matrix Operation
IV. Hamilton Operator
V. Velocity Gradient Tensor and Matrix
VI. Rotation of Coordinate System
VII. Liutex Definition
VIII. Divergence of the Tensor
IX. Conclusions

1. Vortex is Ubiquitous in Universe

(a) Tornado

(c) Airplane tip vortex

(b) Hurricane

(d) Galaxy

UNIVERSITY OF TEXAS ARLINGTON

1.1 My Confusions with textbooks

1.Helmholtz's original view

Vorticity Line \longrightarrow Vorticity Filaments \longrightarrow Vorticity Tube \longrightarrow Vortex
2. Vorticity: A clear mathematic definition, namely the curl of the velocity vector $\vec{v}: \vec{\omega} \equiv \nabla \times \vec{v}$
3. In most fluid dynamics textbooks: first says vortex is vorticity tube and late says "turbulence is generated by vortex breakdown".
4. My confusions:

1) $\nabla \cdot(\nabla \times \vec{v}) \equiv 0$, which means vortex (vorticity tube) can never break down (Liu et al. 2014)
2) Turbulence is generated by vortex breakdown which can never happen

- This is a serious contradiction in textbooks - later part against the early part in the same textbook

Vortex is a natural phenomenon, but vorticity is a mathematical definition. Vortex=vorticity?
H. Helmholtz, "Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen," Journal für die reine und angewandte Mathematik 55, 25-55 (1858).

1.2 Some Examples by Textbooks

MIT Online Lecture Notes on Fluids (2008) https://web.mit.edu/16.unified/www/SPRIN G/fluids/Spring2008/LectureNotes/f06.pdf
Fluids - Lecture 6 Notes

1. 3-D Vortex Filaments
2. Lifting-Line Theory

Reading: Anderson 5.1
3-D Vortex Filaments

General 3-D vortex

A 2-D vortex, which we have examined previously, can be considered as a 3-D vortex which
is straight and extending to $\pm \infty$. Its velocity field is

$$
V_{\theta}=\frac{\Gamma}{2 \pi r} \quad V_{r}=0 \quad V_{z}=0 \quad \text { (2-D vortex) }
$$

In contrast, a general 3-D vortex can take any arbitrary shape. However, it is subject to the Helmholtz Vortex Theorems:

1) The strength Γ of the vortex is constant all along its length
2) The vortex cannot end inside the fluid. It must either

a) extend to $\pm \infty$, or
 b) end at a solid boundary, or
 c) form a closed loop.

Proofs of these theorems are beyond scope here. However, they are easy to apply in flow modeling situations.
Apparently, they think vortex is a vorticity tube. However, 1) vorticity line cannot end on solid w all ($u=v=0, \omega_{z}=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0$), 2) Helmholtz three theorems only work for inviscid flow, but turbulence cannot be inviscid, $\quad{ }^{3}$) circulation Γ is not fluid rotation (e.g. Iminar channel) UNIVERSITY OF TEXAS ARLINGTON

1.2 Some Examples by Textbooks

- Wu et al.: vortex is "a connected fluid region with high concentration of vorticity compared with its surrounding."
- Nitsche (Encyclopedia): A vortex is commonly associated with the rotational motion of fluid around a common centerline. It is defined by the vorticity in the fluid, which measures the rate of local fluid rotation. - That is incorrect
H. Lamb, Hydrodynamics, (Cambridge university press, Cambridge, 1932).
P. Saffman, Vortices dynamics, (Cambridge university press, Cambridge, 1992).
J.-Z. Wu, H.-Y. Ma, and M.-D. Zhou, Vorticity and vortices dynamics, (Springer-Verlag, Berlin Heidelberg, 2006).
M. Nitsche, "Vortex Dynamics," in Encyclopedia of Mathematics and Physics, (Academic Press, New York, 2006).

1.3 Vorticity-based definitions and limitations (vortex cannot be identified by vorticity)

- Vortex is a natural phenomenon, but vorticity is a mathematical definition. How do we know vortex is vorticity?
- Immediate counter-example is the laminar boundary layer where the vorticity (shear) is very large, but not rotation (no vortex) exists, which will lead to the conclusion : vortex cannot be described by vorticity
- Same thing happens in a laminar channel flow

1.3 Vorticity-based definitions and limitations

- The maximum vorticity does not necessarily occur in the central region of vortical structures. As pointed out by Robinson(1989), "the association between regions of strong vorticity and actual vortices can be rather weak in the turbulent boundary layer, especially in the near wall region." Wang et al.(Communication in Computational Physics, 2016) obtain a similar result that the magnitude of vorticity inside a Lambda vortex can be substantially smaller than the surrounding near the solid wall in a flat plate boundary layer.

1.3 Vorticity-based definitions and limitations (vortex cannot be identified by vorticity)

Y. Wang, Y. Yang, G. Yang and C. Liu, "DNS study on vortex and vorticity in late boundary layer transition," Comm. Comp. Phys. 22, 441-459 (2017).

Robinson (1989): Vortex happens where the vorticity is rother weaker

1.3 Vorticity-based definitions and limitations (vortex cannot be identified by vorticity)

C. Liu, Y. Gao, S. Tian, and X. Dong, "Rortex-A new vortex vector definition and vorticity tensor and vector decompositions," Phys. Fluids 30, 035103 (2018).
University of texas arlington

2. Vector, Tensor and Matrix

1) Difference between Vector/Tensor and Matrix

	Vector/Tensor	Matrix
Meaning	Physics	Mathematics
Features	Objective/Galilean Invariant	Dependent on Coordinates
	Unique	Infinity
Operations	Dot, Cross, Dyadic	Plus, Subtraction, Multiplication,
		Inversion, Transpose

[^0]
3. Vector, Tensor and Matrix Operations

Note that vector/tensor dot product is not matrix multiplication (cannot drop the dot)
$\nabla \vec{V} \neq(\nabla \vec{V})^{T}$ if $\nabla \vec{V}$ is not symmetric

1. Vector Dot Product

$$
\vec{a} \cdot \vec{b}=\vec{a}^{T} \vec{b}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\sum_{1}^{3} a_{i} b_{i}
$$

Vector dot product Matrix multiplication ([$\left.\left.\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]=\vec{a}^{T}\right)$
2. Tensor/Vector Dot Product

Tensor dot product

$$
\begin{aligned}
& \text { or dot product } \cdot \vec{b}=\boldsymbol{A}^{\boldsymbol{T}} \vec{b}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]^{\boldsymbol{T}}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
\sum_{i=1}^{3} a_{i 2} b_{i} \\
\sum_{i=1}^{3} a_{i 3} b_{i}
\end{array}\right] \\
& \text { Note that } \boldsymbol{A} \text { becomes multiplication (transpose) } \boldsymbol{A}^{\boldsymbol{T}}
\end{aligned}
$$

3. Tensor/Vector Dyadic Product $\quad \vec{a} \otimes \vec{b}=\vec{a}(\vec{b})^{T}$

All vector/tensor and operations should be transfer to matrix and matrix operations

4. Hamilton operators:

1. Hamilton operator: $\nabla=\left[\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right]$
2. $\nabla \cdot \vec{v} \quad=\quad \nabla^{T} \vec{v}=\left[\begin{array}{lll}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right]\left[\begin{array}{c}u \\ v \\ w\end{array}\right]=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}$
vector divergence matrix multiplication (left transpose is required)
3. $\nabla \vec{v}=\nabla \otimes \vec{v}=\nabla\left(\vec{v}^{T}\right)=\left[\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right]\left[\begin{array}{lll}u & v & w\end{array}\right]=\left[\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}\end{array}\right]$
vector dyadic matrix multiplication (right transpose is required)
We should not simply drop \otimes which is a dyadic operator, and must do transpose \vec{v} before drop \otimes

UNIVERSITY OF TEXAS

Eigenvalue and Eigenvector

Definition: Let A be an nxn matrix. Any values of λ such that
$A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=0$
has nonzero solutions λ are called eigenvalues of A. The corresponding nonzero vectors \vec{v}
are called eigenvectors of A. Example: $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
$p(\lambda)=\operatorname{det}\left[\begin{array}{ccc}-\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda\end{array}\right]=-\lambda^{3}+1+1+\lambda+\lambda+\lambda=-\lambda^{3}+3 \lambda+2=0$
$-\lambda^{3}+3 \lambda+2=(\lambda+1)\left(-\lambda^{2}+\lambda+2\right)=-(\lambda+1)(\lambda+1)(\lambda-2)=0, \quad \lambda=-1$
(double roots) and 2
Eigenvectors: $E_{-1}=\operatorname{Span}\left(\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right), E_{2}=\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)$, Eigenvecotor is not unique UNIVERSITY OF TEXAS ARLINGTON but a sub-space. 14

Eigenvalue and Eigenvector

$$
\begin{aligned}
& \text { Example: } A=\left[\begin{array}{ccc}
3 & -2 & 0 \\
4 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& p(\lambda)=\operatorname{det}\left[\begin{array}{ccc}
3-\lambda & -2 & 0 \\
4 & -1-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right]=(3-\lambda)(-1-\lambda)(1-\lambda)-(1-\lambda)(-2)(-4)=-\lambda^{3}+3 \lambda^{2}-7 \lambda+5 \\
& =(\lambda-1)\left(\lambda^{2}-2 \lambda+5\right)=0
\end{aligned}
$$

The eigenvalues of A are 1, 1-2i and $1+2 \mathrm{i}$ (two conjugate complex eigenvalues).
There must be one real eigenvector:
$\left[\begin{array}{ccc}3-1 & -2 & 0 \\ 4 & -1-1 & 0 \\ 0 & 0 & 1-1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=0 \rightarrow$ Gaussian $\rightarrow\left[\begin{array}{ccc}2 & -2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \rightarrow x=0, y=x=0, z=1$ (or any k)
One real Eigenvector $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ as $\left[\begin{array}{ccc}3 & -2 & 0 \\ 4 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=1 \cdot\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
In the Vortex Area: $(\nabla \vec{v})^{T}$ or $\nabla \vec{v}$ has one real eigenvalue (one real eigenvector) and two conjugate complex eigenvalues UNIVERSITY OF TEXAS

ARLINGTON

5. Velocity Gradient Tensor and 3x3 Matrix

Velocity increment
According to physical definition:

$$
d \vec{v}=\left[\begin{array}{l}
d u \\
d v \\
d w
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z \\
\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y+\frac{\partial v}{\partial z} d z \\
\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y+\frac{\partial w}{\partial z} d z
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right]\left[\begin{array}{c}
d x \\
d y \\
d z
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\
\frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\
\frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}
\end{array}\right] \cdot\left[\begin{array}{l}
d x \\
d y \\
d z
\end{array}\right]=\nabla \vec{v} \cdot d \vec{l} \quad \text { left transpose is required by dot product }
$$

which is exactly the physical definition that the increment of velocity on a line $d \vec{l}$ is the velocity gradient projection on the line. Therefore, $\nabla \vec{v}$ is the velocity gradient tensor.

4. Velocity Gradient Tensor and Matrix

Misunderstanding made by Wiki and most western fluid dynamics textbooks

Wiki has definition on velocity gradient tensor (see https://en.wikipedia.org/wiki/Strain-rate tensor;)
It says that "in continuum mechanics, in 3-dimensions, the gradient of the velocity $\boldsymbol{\nabla} \boldsymbol{\nabla}$ is a second-order tensor J (see below) which can be transposed as the matrix L"
$\mathrm{L}=(\nabla \vec{v})^{T}=\left[\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}\end{array}\right]$ or $\boldsymbol{\nabla} \vec{v}=\left[\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}\end{array}\right]$ which is incorrect!

However, the right definition is

$$
\nabla \vec{v}=\nabla \otimes \vec{v}=\left[\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\
\frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\
\frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}
\end{array}\right] \neq(\nabla \vec{v})^{T}
$$

Apparently, in Wiki and most western fluid dynamics textbooks, the gradient tensor of velocity $\boldsymbol{\nabla} \overrightarrow{\boldsymbol{v}}$ is really defined as $(\nabla \vec{v})^{T}$. Many people think it is ok to treat a matrix and the transpose of a matrix as identical. However, transpose matrix has same eigenvalues but different eigenvectors and will cause serious mistakes in research on fluid dynamics.

5. Liutex Definition

1. Velocity Gradient

$$
\begin{gathered}
\boldsymbol{\nabla} \vec{v}=\nabla \otimes \vec{v} \\
=\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right]\left[\begin{array}{lll}
u & v & w
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\
\frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\
\frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}
\end{array}\right] \\
\text { Right! }
\end{gathered}
$$

in wiki and most western
fluid dynamics textbooks:

$$
\boldsymbol{\nabla} \vec{v}=\left[\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right] \text { is Incorrect!! }
$$

Confused by dyadic vectors and matrix multiplication https://en.wikipedia.org/wiki/Strain-rate tensor
2. Velocity increment
$\nabla \vec{v}$ here implicates $\nabla \otimes \vec{v}$

$$
d \vec{v}=\nabla \vec{v} \cdot d \vec{l}=\left[\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\
\frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\
\frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}
\end{array}\right] \bigcirc\left[\begin{array}{c}
d x \\
d y \\
d z
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\frac{\partial v}{\partial x}} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\frac{\partial w}{\partial x}} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right]\left[\begin{array}{l}
d x \\
d y \\
d z
\end{array}\right]=(\nabla \vec{v})^{T}\left[\begin{array}{l}
d x \\
d y \\
d z
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z \\
\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y+\frac{\partial v}{\partial z} d z \\
\left.\frac{\partial w}{\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y+\frac{\partial w}{\partial z} d z}\right] \\
\text { Tot product }
\end{array}\right.
$$

5. Liutex Definition

Liutex
$\nabla \vec{v} \cdot \vec{r}=\left[\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}\end{array}\right] \quad\left[\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=\left[\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}\end{array}\right]\left[\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=\lambda \vec{r}$
Tensor dot product Matrix multiplication - Transpose is required
$\mathrm{d} \vec{v}=\nabla \vec{v} \cdot \vec{r}=\lambda \vec{r}-$ Stretch only - that is Liutex vector!

Liutex is eigenvector of matrix $(\nabla \vec{v})^{T}$ Not $\nabla \vec{v}$ which is the reason why people spent so long time (160 years) to find Liutex.

Tensor does not have eigenvector, but matrix has!

5. Liutex Definition

What is the Local Rotation Axis?

Definition 1: A local fluid rotation axis is defined as a vector that can only have stretching (compression) along its length.

Here we limited \vec{r} by the condition of $\vec{\omega} \cdot \vec{r}>0$ and $\|\vec{r}\|_{2}=1$
What is the eigenvector of $\nabla \vec{v}\left[\begin{array}{c}t_{x} \\ t_{y} \\ t_{z}\end{array}\right]=\left[\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}\end{array}\right]\left[\begin{array}{c}t_{x} \\ t_{y} \\ t_{z}\end{array}\right]-\vec{t} \neq \vec{r}$ is not Liutex
Only matrix has eigenvector, but tensor has projection or dot product

5. Liutex Definition

1. Transpose is for matrix not for tensor
2. Dot product is commutable - answer to the left eigenvector question
$\nabla \vec{v} \cdot \vec{r}=(\vec{r} \cdot \nabla \vec{v})^{T}=\lambda \vec{r}$
left side $=\nabla \vec{v} \cdot \vec{r}=(\nabla \vec{v})^{T} \vec{r}=\left[\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}\end{array}\right]\left[\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=\left[\begin{array}{lll}\frac{\partial u}{\partial x} r_{x}+ & \frac{\partial u}{\partial y} r_{y}+ & \frac{\partial u}{\partial z} r_{z} \\ \frac{\partial v}{\partial x} r_{x}+ & \frac{\partial v}{\partial y} r_{y}+ & \frac{\partial v}{\partial z} r_{z} \\ \frac{\partial w}{\partial x} r_{x}+ & \frac{\partial w}{\partial y} r_{y}+ & \frac{\partial w}{\partial z} r_{z}\end{array}\right]$
right side $=\vec{r} \cdot \nabla \vec{v}=\vec{r}^{T} \nabla \vec{v}=\left[\begin{array}{lll}r_{x} & r_{y} & r_{z}\end{array}\right]\left[\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}\end{array}\right]=\left[\begin{array}{lll}\frac{\partial u}{\partial x} r_{x}+ & \frac{\partial u}{\partial y} r_{y}+ & \frac{\partial u}{\partial z} r_{z} \\ \frac{\partial v}{\partial x} r_{x}+ & \frac{\partial v}{\partial y} r_{y}+ & \frac{\partial v}{\partial z} r_{z} \\ \frac{\partial w}{\partial x} r_{x}+ & \frac{\partial w}{\partial y} r_{y}+ & \frac{\partial w}{\partial z} r_{z}\end{array}\right]$ $\left(\vec{r}^{T} \nabla \vec{v}\right)^{T}=(\nabla \vec{v})^{T} \vec{r}$ Left eigenvector needs transpose of $\nabla \vec{v}$ matrix Only matrix has eigenvector, but tensor has projection or dot product

5. Liutex Definition

$\nabla \vec{v}^{T}\left[\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=\alpha \vec{r} \quad$ There is only stretching (compression) along \vec{r}-local rotation axis

- \vec{r} is eigenvector of matrix $(\nabla \vec{v})^{T}$ but not $\nabla \vec{v}$ and
$\vec{R}=R \vec{r}=\left\{\langle\vec{\omega}, \vec{r}\rangle-\sqrt{\langle\vec{\omega}, \vec{r}\rangle^{2}-4 \lambda_{c i}^{2}}\right\} \vec{r}$
\vec{r} is the Liutex direction and, therefore, answers why taking so long time to find Liutex which is the rigid mathematical definition of local rotation or vortex

Rotation of Coordinate System

2-D Coordinate System Rotation:

$\left[\begin{array}{l}x \\ y\end{array}\right]$ in the original coordinates, the coordinates $\left[\begin{array}{l}X \\ Y\end{array}\right]$ in the new (rotated) coordinates can be expressed as $\left[\begin{array}{l}X \\ Y\end{array}\right]=\boldsymbol{P}\left[\begin{array}{l}x \\ y\end{array}\right]$
$\boldsymbol{P}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is a rotation matrix which is orthogonal, namely, $\boldsymbol{P}^{T}=\boldsymbol{P}^{T} \boldsymbol{P}=\boldsymbol{I}$.

Figure 2.1 2D Coordinate rotation
Velocity gradient tensor in the rotated coordinate system
If a rotation matrix P is used to rotate the $x y$-frame to $X Y$-frame, the velocity gradient tensor in the $X Y$-frame $\nabla \vec{V}$ is related to the velocity gradient tensor in the $x y$-frame $\nabla \vec{v}$ through the following expression:

$$
(\nabla \vec{V})^{T}=P^{-1}(\nabla \vec{v})^{T} P=P^{T}(\nabla \vec{v})^{T} P ; \quad \nabla \vec{V}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial U}{\partial X} & \frac{\partial U}{\partial Y} \\
\frac{\partial V}{\partial X} & \frac{\partial V}{\partial Y}
\end{array}\right]
$$

Rotation of Coordinate System

Principal Rotation and Principal Coordinates in 3D

Rotation matrix Q in the xyz coordinate system

Definition 3. $\boldsymbol{Q}^{\boldsymbol{T}}$ is defined as a rotation matrix to rotate the z-axis to parallel to \vec{r},
where $\boldsymbol{Q}=\left[\begin{array}{lll}Q_{1} & Q_{2} & Q_{3}\end{array}\right]=\left[\begin{array}{lll}Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33}\end{array}\right], \quad Q_{1} \perp Q_{2}, Q_{1} \perp Q_{3}, Q_{2} \perp Q_{3}$
Theorem 1. If the third column of rotation \boldsymbol{Q} is $\vec{r}, \boldsymbol{Q}^{\boldsymbol{T}}$ can rotate the z-axis to parallel to \vec{r}.
$\boldsymbol{Q}=\left[\begin{array}{lll}Q_{11} & Q_{12} & r_{x} \\ Q_{21} & Q_{22} & r_{y} \\ Q_{31} & Q_{32} & r_{z}\end{array}\right], \boldsymbol{Q}^{T}\left[\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=\left[\begin{array}{ccc}Q_{11} & Q_{21} & Q_{31} \\ Q_{12} & Q_{22} & Q_{32} \\ r_{x} & r_{y} & r_{z}\end{array}\right]\left[\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
$(\nabla \vec{V})^{T}=Q^{-1}(\nabla \vec{v})^{T} Q=Q^{T}(\nabla \vec{v})^{T} Q=\left[\begin{array}{ccc}Q_{11} & Q_{21} & Q_{31} \\ Q_{12} & Q_{22} & Q_{32} \\ r_{x} & r_{y} & r_{z}\end{array}\right]\left[\begin{array}{ccc}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}\end{array}\right]\left[\begin{array}{lll}Q_{11} & Q_{12} & r_{x} \\ Q_{21} & Q_{22} & r_{y} \\ Q_{31} & Q_{32} & r_{z}\end{array}\right]=\left[\begin{array}{ccc}\frac{\partial U}{\partial X} & \frac{\partial U}{\partial Y} & 0 \\ \frac{\partial V}{\partial X} & \frac{\partial V}{\partial Y} & 0 \\ \frac{\partial W}{\partial X} & \frac{\partial W}{\partial Y} & \lambda_{r}\end{array}\right]$
Because $(\nabla \vec{v})^{T} \vec{r}=\lambda_{r} \vec{r} ; Q_{1}, Q_{2}$ and \vec{r} and orthogonal

Rotation of Coordinate System

Principal Rotation and Principal Coordinates in 3D

Rotation matrix Q in the xyz coordinate system (In fact, we do not need to do Q and P rotation to get Liutex Gao \&Liu PoF 2018)
Definition 3. $\boldsymbol{Q}^{\boldsymbol{T}}$ is defined as a rotation matrix to rotate the z-axis to parallel to \vec{r},
where $\boldsymbol{Q}=\left[\begin{array}{lll}Q_{1} & Q_{2} & Q_{3}\end{array}\right]=\left[\begin{array}{lll}Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33}\end{array}\right], \quad Q_{1} \perp Q_{2}, Q_{1} \perp Q_{3}, Q_{2} \perp Q_{3}$
Theorem 2. If the third column of rotation \boldsymbol{Q} is \vec{r}, at least one \boldsymbol{Q} can be given by
$\boldsymbol{Q}=\left[\begin{array}{lll}Q_{11} & Q_{12} & r_{x} \\ Q_{21} & Q_{22} & r_{y} \\ Q_{31} & Q_{32} & r_{z}\end{array}\right]=\left[\begin{array}{ccc}0 & a r_{z} & r_{x} \\ r_{z} & r_{z} & r_{y} \\ -r_{y} & \left(-r_{y}-a r_{x}\right) & r_{z}\end{array}\right]$ where $a=-\frac{r_{y}{ }^{2}+r_{z}{ }^{2}}{r_{x} r_{y}}$ assume $r_{x} \neq 0$ and $r_{y} \neq 0$
Proof: $Q_{1} \cdot Q_{3}=\left[\begin{array}{c}0 \\ r_{z} \\ -r_{y}\end{array}\right] \cdot\left[\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=\left[\begin{array}{lll}0 & r_{z} & -r_{y}\end{array}\right]\left[\begin{array}{c}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=0$
$Q_{2} \cdot Q_{3}=\left[\begin{array}{c}a r_{z} \\ r_{z} \\ -r_{y}-a r_{x}\end{array}\right] \cdot\left[\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=\left[\begin{array}{lll}a r_{z} & r_{z} & -r_{y}-a r_{x}\end{array}\right]\left[\begin{array}{c}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=a r_{z} r_{x}+r_{z} r_{y}+\left(-r_{y}-a r_{x}\right) r_{z}=a r_{z} r_{x}+r_{z} r_{y}-r_{y} r_{z}-$
$a r_{x} r_{z}=0$
$Q_{1} \cdot Q_{2}=\left[\begin{array}{c}0 \\ r_{z} \\ -r_{y}\end{array}\right] \cdot\left[\begin{array}{c}a r_{z} \\ r_{z} \\ -r_{y}-a r_{x}\end{array}\right]=\left[\begin{array}{lll}a r_{z} & r_{z} & -r_{y}-a r_{x}\end{array}\right]\left[\begin{array}{c}0 \\ r_{z} \\ -r_{y}\end{array}\right]=r_{z}^{2}+r_{y}{ }^{2}+a r_{x} r_{y}=r_{z}^{2}+r_{y}{ }^{2}-\frac{r_{y}{ }^{2}+r_{z}^{2}}{r_{x} r_{y}} r_{x} r_{y}=0$
UNIVERSITY OF TEXAS

Rotation of Coordinate System

Principal Rotation and Principal Coordinates in 3D :

Rotation matrix P (In fact, we do not need to do Q and Protation to get Liutex - Gao \&Liu PoF 2018)
Definition 4. $\boldsymbol{P}^{\boldsymbol{T}}$ is defined as a rotation matrix to rotate the $(\nabla \vec{V})^{T}$ to the Principal Matrix
i.e. $\boldsymbol{P}^{T}(\nabla \vec{V})^{T} P=\left(\nabla \vec{V}_{\theta}\right)^{T}=\left[\begin{array}{ccc}\lambda_{c r} & -\frac{R}{2} & 0 \\ \frac{R}{2}+\epsilon & \lambda_{c r} & 0 \\ \xi & \eta & \lambda_{r}\end{array}\right]$ where $(\nabla \vec{V})^{T}=\left[\begin{array}{ccc}\frac{\partial U}{\partial X} & \frac{\partial U}{\partial Y} & 0 \\ \frac{\partial V}{\partial X} & \frac{\partial V}{\partial Y} & 0 \\ \frac{\partial W}{\partial X} & \frac{\partial W}{\partial Y} & \lambda_{r}\end{array}\right]$
$\boldsymbol{P}^{\boldsymbol{T}}$ can be given by $\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}\frac{\partial U}{\partial X} & \frac{\partial U}{\partial Y} & 0 \\ \frac{\partial V}{\partial X} & \frac{\partial V}{\partial Y} & 0 \\ \frac{\partial W}{\partial X} & \frac{\partial W}{\partial Y} & \lambda_{r}\end{array}\right]\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\frac{\partial U}{\partial X} \cos \theta-\frac{\partial U}{\partial Y} \sin \theta & \frac{\partial U}{\partial X} \sin \theta+\frac{\partial U}{\partial Y} \cos \theta & 0 \\ \frac{\partial V}{\partial X} \cos \theta-\frac{\partial V}{\partial Y} \sin \theta & \frac{\partial V}{\partial X} \sin \theta+\frac{\partial V}{\partial Y} \cos \theta & 0 \\ \frac{\partial W}{\partial X} \cos \theta-\frac{\partial W}{\partial Y} \sin \theta & \frac{\partial W}{\partial X} \sin \theta+\frac{\partial W}{\partial Y} \cos \theta & \lambda_{r}\end{array}\right]=\left[\begin{array}{ccc}\lambda_{c r} & -\frac{R}{2} & 0 \\ \frac{R}{2}+\epsilon & \lambda_{c r} & 0 \\ \xi & \eta & \lambda_{r}\end{array}\right]$
i.e. $A_{11}=A_{22}$

Let $\xi=\frac{\partial W}{\partial X} \cos \theta-\frac{\partial W}{\partial Y} \sin \theta, \eta=\frac{\partial W}{\partial X} \sin \theta+\frac{\partial W}{\partial Y} \sin \theta$, $\cos \vartheta\left(\frac{\partial U}{\partial X} \cos \theta-\frac{\partial U}{\partial Y} \sin \theta\right)-\sin \theta\left(\frac{\partial V}{\partial X} \cos \theta-\frac{\partial V}{\partial Y} \sin \theta\right)=\sin \theta\left(\frac{\partial U}{\partial X} \sin \theta+\frac{\partial U}{\partial Y} \cos \theta\right)+\cos \theta\left(\frac{\partial V}{\partial X} \sin \theta+\frac{\partial V}{\partial Y} \cos \theta\right)$ $\left(\frac{\partial U}{\partial X}-\frac{\partial V}{\partial Y}\right)(\cos \theta \cos \theta-\sin \theta \sin \theta)-2\left(\frac{\partial U}{\partial Y}+\frac{\partial V}{\partial X}\right) \sin \theta \cos \vartheta=0,\left(\frac{\partial U}{\partial X}-\frac{\partial V}{\partial Y}\right) \cos 2 \theta-\left(\frac{\partial U}{\partial Y}+\frac{\partial V}{\partial X}\right) \sin 2 \theta=0$ to find θ

Mathematical Foundation of Liutex

Principal Matrix and Principal Decomposition

(using a unique matrix to represent the velocity gradient tensor)
The principal tensor matrix should be
$\nabla \vec{V}=\left[\begin{array}{ccc}\lambda_{c r} & \frac{R}{2}+\epsilon & \xi \\ -\frac{R}{2} & \lambda_{c r} & \eta \\ 0 & 0 & \lambda_{r}\end{array}\right],(\nabla \vec{V})^{T}=\left[\begin{array}{ccc}\lambda_{c r} & -\frac{R}{2} & 0 \\ \frac{R}{2}+\epsilon & \lambda_{c r} & 0 \\ \xi & \eta & \lambda_{r}\end{array}\right]$
(Real Schur Decomposition equivalent to

QP rotation but without coordinate rotation)

Principal decomposition

$$
\begin{array}{r}
\nabla \vec{V}=\left[\begin{array}{ccc}
\lambda_{c r} & \frac{R}{2}+\epsilon & \xi \\
-\frac{R}{2} & \lambda_{c r} & \eta \\
0 & 0 & \lambda_{r}
\end{array}\right]=\left[\begin{array}{ccc}
0 & R / 2 & 0 \\
-R / 2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
\lambda_{c r} & 0 & 0 \\
0 & \lambda_{c r} & 0 \\
0 & 0 & \lambda_{r}
\end{array}\right]+\left[\begin{array}{lll}
0 & \epsilon & \xi \\
0 & 0 & \eta \\
0 & 0 & 0
\end{array}\right]=\boldsymbol{R}+\boldsymbol{S} \mathbf{C}+\mathbf{S} \\
(\nabla \vec{V})^{T}=\left[\begin{array}{ccc}
0 & -R / 2 & 0 \\
R / 2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
\lambda_{c r} & 0 & 0 \\
0 & \lambda_{c r} & 0 \\
0 & 0 & \lambda_{r}
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
\epsilon & 0 & 0 \\
\xi & \eta & 0
\end{array}\right]=-\boldsymbol{R}+\boldsymbol{S} \mathbf{C}+\boldsymbol{S}^{\boldsymbol{T}}
\end{array}
$$

Koloar 2007 and Li et al. 2014 have similar ideas to decompose the velocity gradient tensor
Kolář, V., Vortex identification: New requirements and limitations [J]. International Journal of Heat and Fluid Flow, (2007), 28(4): 638-652. Li, Z., Zhang, X., He., F., Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor.
Acta Physics Sinica, 2014, 63(5): 054704, in Chinese

6. Divergence of a Tensor

Divergence of velocity gradient
$\nabla \cdot \nabla \vec{v}=\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right]\left[\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}\end{array}\right]=\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}, \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}, \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right]$
is a 1×3 vector and must be transposed
$[\nabla \cdot \nabla \vec{v}]^{\boldsymbol{T}}=\left[\begin{array}{c}\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}} \\ \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}} \\ \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\end{array}\right]=\left[\begin{array}{c}\nabla^{2} u \\ \nabla^{2} v \\ \nabla^{2} w\end{array}\right] \neq \nabla \cdot \nabla \vec{v}$
Useful for understanding fluid dynamics governing equations
We use column vector only

6. Divergence of a Tensor

Divergence of velocity gradient
$\left[\nabla \cdot(\nabla \vec{v})^{T}\right]^{T}=\left(\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right]\left[\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}\end{array}\right]\right)^{T}=\left[\begin{array}{l}\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y \partial x}+\frac{\partial^{2} w}{\partial z \partial x} \\ \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z \partial y} \\ \frac{\partial^{2} u}{\partial x \partial z}+\frac{\partial^{2} v}{\partial y \partial z}+\frac{\partial^{2} w}{\partial z^{2}}\end{array}\right]=\left[\begin{array}{c}\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) \\ \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) \\ \frac{\partial}{\partial z}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)\end{array}\right]$
$\left[\nabla \cdot(\nabla \vec{v})^{T}\right]^{T}=\left[\begin{array}{l}\frac{\partial}{\partial x} \operatorname{tr} \\ \frac{\partial}{\partial y} \operatorname{tr} \\ \frac{\partial}{\partial z} t r\end{array}\right]=\nabla \operatorname{tr}=\nabla(\nabla \cdot \vec{v})$
For incompressible flow: $\left[\nabla \cdot(\nabla \vec{v})^{T}\right]^{T} \equiv 0$
Useful for understanding fluid dynamics governing equations:
For incompressible flow:
$\nabla \cdot \nabla \vec{v}=\nabla \cdot \nabla \vec{v}+\nabla \cdot(\nabla \vec{v})^{T}=\nabla \cdot\left[\nabla \vec{v}+(\nabla \vec{v})^{T}\right]$ - Strain (symmetric)
$\nabla \cdot \nabla \vec{v}=\nabla \cdot \nabla \vec{v}-\nabla \cdot(\nabla \vec{v})^{T}=\nabla \cdot\left[\nabla \vec{v}-(\nabla \vec{v})^{T}\right]$ - Vorticity (anti-symmetric)
Same to use strain (6 entries in $\mathrm{N}-\mathrm{S}$) or vorticity (3 entries in my new governing equations)
UNIVERSITY OF TEXAS
ARLINGTON

Conclusion

1. Vector and tensor are unique, but matrix is dependent on coordinate systems
2. Vector and tensor have dot, cross, and dyadic operations, but matrix only has addition, subtraction, multiplication, transpose, inverse.
3. Vector and tensor operators are different from matrix operators.
4. Velocity gradient formula given by Wiki and western fluid dynamics textbooks is misunderstanding and should be corrected.
5. Liutex and two other orthogonal vectors can make a rotation matrix and obtained a principal coordinate system to get the principal matrix for velocity gradient tensor which is unique
6. Cauchy-Stokes decomposition should be revisited

Reference Papers

1. Liu, C.*, Yu, Y. \& Gao, Ys. Liutex based new fluid kinematics. J Hydrodyn 34, 355-371 (2022). https://doi.org/10.1007/s42241-022-0046-z
2. Liu, C.* and Liu, Z., New governing equations for fluid dynamics, AIP Advances 11, 115025 (2021); https://doi.org/10.1063/5.0074615
3. Gao, Y. and Liu, C., "Rortex and comparison with eigenvalue-based identification criteria", Physics of Fluid 30, 085107 (2018).
4. Y. Wang, Y. Gao, J. Liu, C. Liu*, "Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition", J Hydrodyn (2019). https://doi.org/10.1007/s42241-019-0032-2 with Y. Wang, Y. Gao, Y. Liu
5. Y. Gao and C. Liu*, "Letter: Rortex based velocity gradient tensor decomposition", Physics of Fluids, in processing (2019).
6. C. Liu, Y. Gao, X. Dong, J. Liu, Y. Zhang, X. Cai, L. Gui, "Third generation of vortex identification methods: Omega and Liutex/Rortex based systems", Journal of Hydrodynamics (2019), 31(2): 1-19

Thank you!

[^0]: 1) Do not think matrix is unique for vector/tensor
 $\xrightarrow[\longrightarrow]{\vec{V}}=\left[\begin{array}{l}1 \\ 1 \\ \text { 1 }\end{array} \begin{array}{l}\text { 1) Do not think matrix is unique for vec } \\ \text { e.g. } \vec{V} \text { has infinity number of correspo } \\ \text { 2) Vector/tensor dot product is not ma } \\ \text { 3) } \nabla \vec{V} \neq(\nabla \vec{V})^{T} \text { if } \nabla \vec{V} \text { is not symmetric }\end{array}\right.$

 $$
 \vec{V}=\left[\begin{array}{c}
 \sqrt{2} \\
 0 \\
 0
 \end{array}\right]
 $$

