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1. Vortex is Ubiquitous in Universe

(a) Tornado (b) Hurricane

(c) Airplane tip vortex (d) Galaxy
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1.1 My Confusions with textbooks
“T'Helmholtz’s original view ... . . m™mMmmWmw4e4e///—

Vorticity Line —, Vorticity Filaments___,Vorticity Tube__, Vortex

2. Vorticity: A clear mathematic definition, namely the curl of the
velocity vectorv: w =V X v

3. In most fluid dynamics textbooks: first says vortex is vorticity tube
and late says “turbulence is generated by vortex breakdown”.

4. My confusions:

1) V- (V xv) = 0, which means vortex (vorticity tube) can never
break down (Liu et al. 2014)

2) Turbulence is generated by vortex breakdown which can never
happen

- This is a serious contradiction in textbooks — later part against the
early part in the same textbook

Vortex is a natural phenomenon, but vorticity is a mathematical
definition. Vortex=vorticity?

H. Helmholtz, “Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen,”
Journal fiir die reine und angewandte Mathematik 55, 25-55 (1858).
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1.2 Some Examples by Textbooks

MIT Online Lecture Notes on Fluids (2008) https://web.mit.edu/16.unified/www/SPRIN

G/fluids/Spring2008/LectureNotes/f06.odf
Fluids — Lecture 6 Notes

1. 3-D Vortex Filaments
2. Lifting-Line Theory

Reading: Anderson 5.1
3-D Vortex Filaments

General 3-D vortex
A 2-D vortex, which we have examined previously, can be considered as a 3-D vortex which
is straight and extending to +n~c. Its velocity field is

I’

2mr

Vo

V. =0 V.=0 (2-D vortex)

In contrast, a general 3-D vortex can take any arbitrary shape. However. it is subject to the
Helmholtz Vortex Theorems:
1) The strength I' of the vortex is constant all along its length
2) The vortex cannot end inside the fluid. It must either
a) extend to +oc, or

b) end at a solid boundary, or
¢) form a closed loop.

Proofs of these theorems are beyond scope here. However, they are easy to apply in flow
modeling situations.

Apparently, they think vortex is a vorticity tube. However, 1) vorticity line cannot end on solid w

ov ou

all (u=v=0, w, = % oy 0), 2) Helmholtz three theorems only work for inviscid flow,

but turbulence cannot be inviscid,
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1.2 Some Examples by Textbooks

* Wu et al.: vortex is “a connected fluid region with high
concentration of vorticity compared with its surrounding.”

* Nitsche (Encyclopedia): A vortex is commonly associated
with the rotational motion of fluid around a common
centerline. It is defined by the vorticity in the fluid, which
measures the rate of local fluid rotation.

— That is incorrect

H. Lamb, Hydrodynamics, (Cambridge university press, Cambridge, 1932).

P. Saffman, Vortices dynamics, (Cambridge university press, Cambridge, 1992).

J.-Z. Wu, H.-Y. Ma, and M.-D. Zhou, Vorticity and vortices dynamics, (Springer-Verlag, Berlin Heidelberg, 2006).
M. Nitsche, “Vortex Dynamics,” in Encyclopedia of Mathematics and Physics, (Academic Press, New York, 2006).
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1.3 Vorticity-based definitions and limitations
(vortex cannot be identified by vorticity)

* Vortex is a natural phenomenon, but vorticity is a
mathematical definition. How do we know vortex is vorticity?
* Immediate counter-example is the laminar
boundary layer where the vorticity (shear) is very
large, but not rotation (no vortex) exists, which
will lead to the conclusion : vortex cannot be
described by vorticity

 Same thing happens in a laminar channel flow
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1.3 Vorticity-based definitions and limitations

* The maximum vorticity does not necessarily occur in the
central region of vortical structures. As pointed out by
Robinson(1989), “the association between regions of strong
vorticity and actual vortices can be rather weak in the
turbulent boundary layer, especially in the near wall region.’
Wang et al.(Communication in Computational Physics, 2016) obtain a
similar result that the magnitude of vorticity inside a Lambda
vortex can be substantially smaller than the surrounding
near the solid wall in a flat plate boundary layer.

4
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1.3 Vorticity-based definitions and limitations
(vortex cannot be identified by vorticity)

) ! vorticity small at vortex
X

] |

™ n " 7 i A ‘\l
R —240 445 R
X

A vortex and shear layer

Y. Wang, Y. Yang, G. Yang and C. Liu, “DNS study on vortex and vorticity in late boundary layer transition,”
Comm. Comp. Phys. 22, 441-459 (2017).

Robinson (1989): Vortex happens where the vorticity is rother weaker
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1.3 Vorticity-based definitions and limitations
(vortex cannot be identified by vorticity)

Ivorticity]: 02 0.3 04 05 06 07 08 09
N\

\\ N | vorticity large but no vortex \
¢ N N\ ¢

[vorticity]: 0.2 0.3 04 05 0.6 \ 0.7 } 08 09 1

7

% LA . \\ / \\‘1-:
G - \ PN . \\ \_\. "‘\.\\

\ \

N

vorticity small at vortex

. \Robinson (1989): Vortex happens where the vor“ti'c'ity is rother weaker

C. Liu, Y. Gao, S. Tian, and X. Dong, “Rortex—A new vortex vector definition and vorticity tensor and
vector decompositions,” Phys. Fluids 30, 035103 (2018).
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2. Vector, Tensor and Matrix

1) Difference between Vector/Tensor and Matrix

Meaning Physics Mathematics

Features Objective/Galilean Invariant Dependent on Coordinates
Unique Infinity

Operations Dot, Cross, Dyadic Plus, Subtraction, Multiplication,

Inversion, Transpose

1) Do not think matrix is unique for vector/tensor

[ V = 1] e. g. V has infinity number of corresponding 3x1 matrices
ol 2) Vector/tensor dot product is not matrix multiplication
> 3) vV = (VV)T if 7V is not symmetric
\V 5|V
V=10
0
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3. Vector, Tensor and Matrix Operations

Note that vector/tensor dot product is not matrix multiplication (cannot drop the dot)
vV = (VV)T if V'V is not symmetric

1. Vector Dot Product b, | 3
i-b=a"b=[a, a, as | |b; =Zaibi
LEI
Vector dot product Matrix multiplication ([a; a, as |=a’)
- 3
2. Tensor/Vector Dot Product
z aiq bl
Tensor dot product o o =1
B ~ [@11 Q12 Qg3 T'1b, 11 A1 A31]|bg 3
A-b=ATb =|az Az az3| |by| = |A12 Q22 Q32| |by| = a;j, b;
(31 A3z A33] |bs 13 Q23 A33]|b; i=1
- - 3
Matrix multiplication (transpose) .
Note that A becomes AT iz bi
i=1

3. Tensor/Vector Dyadic Product a®b = a (B)T

All vector/tensor and operations should be transfer to matrix and matrix operations
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4. Hamilton operators:

o
dx
. 0
1. Hamilton operator: V= %
9
nya
T — Top=|— =— —
2. Vv v ax ay 62][] 0z
vector divergence matrix multiplication (left transpose 1s required)
A u v aw]
0x dx O0x O0Ox
0 dJu Jdv OJw
- _ - _ —)T _ _ —
3.Vo=VQuv=V@Ww") = 3y lu v wj 3 3y 3y
2 ou ov aw
97 Ldz 0z 0z-

vector dyadic matrix multiplication (right transpose 1s required)

We should not simply drop @ which is a dyadic operator, and must do
transpose v before drop @
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Eigenvalue and Eigenvector

Definition: Let 4 be an nxn matrix. Any values of A such that
Av=Avor(A—ADv =0

has nonzero solutions A are called eigenvalues of 4. The corresponding nonzero vectors v

0 1 1
are called eigenvectors of A. Example: A=(1 0 1]
1 1 0
-1 1 1
p(AD) =det|1 -2 1|=-B+14+1+1+214+21=-23431+2=0
1 1 -4

—AB+31+2=A+D(-2?+21+2)=—Q+1D1+1)1-2)=0, 1 =-1

(double roots) and 2
1
, E; = Span| |1] |, Eigenvecotor is not unique
1

ARLINGTON but a sub-space.

—171 [—1
Eigenvectors: E_; = Span([ 1 ‘,[ 0
0 1
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Eigenvalue and Eigenvector

3 =2 0
Example:A=14 -1 0
0O 0 1
3—4 -2 0
p(1) =det[ 4 —1-1 0 ]= B=D(=1=D1 =2 —(1=D)(=2)(=4) = -2 +312 —T1+5
0 0 1-4

=(A—1) (12 =21+5)=0
The eigenvalues of 4 are 1, 1-21 and 1+21 (two conjugate complex eigenvalues).

There must be one real eigenvector:

3—-1 -2 2 -2 0
4 -1-1 = 0 — Gaussian = 2 O O - x=0,y=x=0,z=1(oranyk)
0 0 1—1

o.EgH[ 1 of[o|-1-[

In the Vortex Area: (V)T or V¥ has one real eigenvalue (one real eigenvector) and two
conjugate complex eigenvalues
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5. Velocity Gradient Tensor and 3x3 Matrix

Velocity increment
According to physical definition:

" du ou Ju 1 [Ou oOJu 0u
adX'F@dy'FEdZ Ox ay 37
L, du | ov ov ov _|ov v ov dx
dv = [Ccll]:)/] = adX'l‘@dy{'EdZ = Ox ay Y [;{}Z/]
ow ow ow ow ow Jdw
_adx+@dy+gdz_ | dx Jdy 0z]
u v ow
dx Odx Ox dx
= Z—I; Z—; ?3_‘;: : [dy] =Vi-dl left transpose 1s required by dot product
ou v oow| Az
Ldz 0z 0z-

which is exactly the physical definition that the increment of velocity on a line

dl is the velocity gradient projection on the line. Therefore, Vv is the velocity
gradient tensor.
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4. Velocity Gradient Tensor and Matrix

Misunderstanding made by Wiki and most western fluid dynamics textbooks

Wiki has definition on velocity gradient tensor (see https://en.wikipedia.org/wiki/Strain-rate_tensor;)

It says that “in continuum mechanics, in 3-dimensions, the gradient of the velocity V¥ is a second-order tensor J

(see below) which can be transposed as the matrix L”

L=(Vv)T =

ou
ax
u
ay
u

(92

v
ax
ov
ay
v
9z

ow
ax
ow
E%
ow

9z

Ju OJu OJu

dx 0Jdy 0z

— v Jdv Odv
orvv =" % oz
ow ow ow

| dx Jdy 0z

However, the right definition is

which is incorrect!

ou  Jv 0w
Jdx Ox O0Ox
ou Jdv Jow
- —>__ hid hildd —>T
Vv = Vv = 3y oy oyl|* (Vv)
ou v ow
0z 0z 0z

Apparently, in Wiki and most western fluid dynamics textbooks, the gradient tensor of velocity V¥ is really

defined as (V#)T. Many people think it is ok to treat a matrix and the transpose of a matrix as identical.

However, transpose matrix has same eigenvalues but different eigenvectors and will cause serious mistakes in

research on fluid dynamics.
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5. Liutex Definition ‘ﬂ:‘

1. Velocity Gradient in I:Vlkl and most western
Vi=V®73 fluid dynamics textbooks:
v T v ou ou  ou]
C 0 ] ou Jdv Ow]
— dx Jdy 0z
ox Jdx Odx Ox o v ov
|9 __|0u 9v ow Vi=|— — —|islIncorrect!!
= [u v W] = dx 0y 0z
dy Jdy dy 0y 3 3 5
9 u v ow = =
L0z .dz 0z 0z- _c').x dy  0z. ) - )
Right! Confused by dyadic vectors and matrix multiplication

https://en.wikipedia.org/wiki/Strain-rate tensor

2. Velocity increment Vv here implicates V @ v
i . [0 9] ou 0 0 0
a_u a_v a_W o —udx + —udy + —udz
dx Ox Ox dx dy 0z d0x dy 0z
o Zx v v av Zx - VQTZ’C _|ow, L ov v
voveat= dy dy 0dy ® di “|ox ody oz di =) di |ox * dy Y 0z z
du dv Jdw dw Jdw Jw ow dx + ow gy 4+ ow P
Ldz 0z 0z dx OJdy 0z | 0x * dy Y 0z Z_
Dot product Transposed for Matrix multiplication

UNIVERSITY OF TEXASAARLINGTON



5. Liutex Definition

Liutex
ou  0v Ow]
ax 9x ox
> ou Ov oOw
Vv-r = 5y 9y dy
Ju O0v OJw
0z 0z oz

Tensor dot product

d

rx
Ty
rZ

|

ou  ou  ou
dx Jdy 0z
v 0v Ov
ax 9y oz
ow Jdw Jdw
' dx Ody 0z

Matrix multiplication — Transpose is required

dv = Vv - 7= A7 - Stretch only — that is Liutex vector!

Liutex is eigenvector of matrix (V)" Not Vv which is the reason why people
spent so long time (160 years) to find Liutex.

Tensor does not have eigenvector, but matrix has!
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5. Liutex Definition

What is the Local Rotation Axis?

Definition 1: A local fluid rotation axis is defined as a vector that can only

have stretching (compression) along its length.

Tx
dvi=Vv-r |5V || =at
Tz
Dot product [Matrix multiplication

- 7 is eigenvector of matrix (V7 )" but not Vv

- stretching or compressio

Here we limited 7 by the condition of w - 7 > 0 and ||7||,=1

What is the eigenvector of Vv | {y,

_tx_

t,

Ju o0v JOw
dx OJx Ox
Ju OJv Jw
dy dy 0y
Ju Ov OJOw
.dz 0z 0z-

_tx_

Ly

t,

-t # 7 is not Liutex

Only matrix has eigenvector, but tensor has projection or dot product
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5. Liutex Definition

1. Transpose is for matrix not for tensor
2. Dot product is commutable - answer to the left eigenvector question

Vo7 = (7 VD) = AF

Ju  oJu odu ‘a_ur n a_ur n a_u
dx 0y 0z Ty ox * oy Y 0z
v 0v OJdv ov v ov
. — - . - — >N\T =2 — r = | — —_ —_
left side = Vv -7 = (V¥) ox oy oz||PFlaxxt T 5
ow ow ow| 7l low o ow L ow
0x dy 0z ox ¥ oy Y 0z
u  dv  ow] [OJu ou
It -1t
dx 0x 0x ox ¥ oy Y
Ju Jdv Jw ov ov
. . - - ->T 7 2
= 71. — — =T — T
rightside =7+ VU = 7TVU = [r, 7, 1] 5y oy oyl |laxt oy T
dJu Jdv Jw ow ow
— T — T
L9z 0z 0zd |ox x + oy y+

#Tvv)! = (Vv )T 7 Left eigenvector needs transpose of V¥ matrix
Only matrix has eigenvector, but tensor has projection or dot product

UNIVERSITY OF TEXASAARLINGTON




5. Liutex Definition

rx

voT [Ty} = a1 Thereisonly stretching (compression) along 7 -local rotation axis
7ﬂZ

- 7 is eigenvector of matrix (77 )" but not Vv and

5 - — - — =\ D 2 -

R =Rr = {(a),r) — J(w,r) — 4/lci}r

7 is the Liutex direction and, therefore, answers why taking so long time to find Liutex
which is the rigid mathematical definition of local rotation or vortex

UNIVERSITY OF TEXASAARLINGTON



Rotation of Coordinate System

2-D Coordinate System Rotation:

X X X X
l ] in the original coordinates, the coordinates [Y] in the new (rotated) coordinates can be expressed as[Y] =P lyl

y
cosf sinf

P = ] is a rotation matrix which is orthogonal, namely, PPT = PTP = I.
—sin@ cos6

Figure 2.1 2D Coordinate rotation

Velocity gradient tensor in the rotated coordinate system

If a rotation matrix Pis used to rotate the xy~-frame to XY-frame, the velocity gradient tensor in the XY-frame \vi%
is related to the velocity gradient tensor in the xy-frame V¥ through the following expression:

NT — p-1uinTp — pT(vinNTpP- VI — —
(W) =P (Vo) P = PE(V) P WV [sin@ cosf 1|9v 9v||—sinf cosf| [V 9V

ou  du oU U
cosf — Sin9] lax ay] [cos@ sin@]_ |ax oy
ax dy ax oy

0X 0Y
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Rotation of Coordinate System

Principal Rotation and Principal Coordinates in 3D

Rotation matrix Q in the xyz coordinate system

Definition 3. Q”is defined as a rotation matrix to rotate the z-axis to parallel to 7,

Q21 QZZ Q23
Q31 Q32 Q33

Q11 @12 013
where Q = [Q; Q, Q3] =

Theorem 1. If the third column of rotation Q is 7, Q7 can rotate the z-axis to parallel to 7.

Q31| [T 0
| [5]-|o
Tz |7z 1

Qi1 @12 % Tx _Qll

Q =1021 02 Ty‘ ) QT ry — Q12
Q31 Q32 1o 1 Ty

) Q1

(VINT = Q1 (vi)TQ = QT (V)TQ = | Q12
Tx

Q21
Q22

Ty

Q21
Q22

Ty

Because (V)T #= A, #; Q4, Q, and 7 and orthogonal

UNIVERSITY OF TEXAS f

dJu  Jdu Jdu

dx 0y 0z
5 |
321 9x dy 0z
TZ

ow Jdw Jw

 dx 0dy 0z
ARLINGTON

‘: Q11020 1030, L0Q;

|

Q11
Q21

Q31

Q12
Q22

Q32

Tx

Ty
7,'Z

]=

roU

0X
av

0X
ow

L0X

ou

aYy
av

aYy
ow

aYy




Rotation of Coordinate System

Principal Rotation and Principal Coordinates in 3D

Rotation matrix Q in the xyz coordinate system (In fact, we do not need to do Q and P rotation to get Liutex —
Gao &Liu PoF 2018)

Definition 3. Q7is defined as a rotation matrix to rotate the z-axis to parallel to 7,

Qi1 Q12 Q13
where @ = [Q; Q; Q3] =|0Q21 @22 Q23|, Q110201030105
Q31 Q32 033
Theorem 2. If the third column of rotation Q is 7, at least one Q can be given by
Q11 Q12 Tx 2,2
Q =021 02 Ty = Ty | where a = —% assume 1, # 0 andr, # 0
Q31 032 (— ry — C””x) Tz Y
Ty
Proof: Q- Q3 =| 72 [ry] =[0 rp, —n] [ry]
—1y| L7z
- oan, Ty
Q- Q3 = Tz ] . [Ty] =[arz Tz Ty — ar] [Ty] = ant + 15,n,+ (—n, —an)rn, = an net 1y, —n, T, —
-1, — ar. 7
ar,r, =0
2 2
Q- Q2= T ‘ ' [ Tz =[arz Tz Ty — ary] [ T, } 2+ 1,2 4 arn,= 1,2+ 1,2 —%rxryzo
Ty Ty
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Rotation of Coordinate System

Principal Rotation and Principal Coordinates in 3D :

Rotation matrix P (In fact, we do not need to do Q and P rotation to get Liutex — Gao &Liu PoF 2018)
Definition 4. PTis defined as a rotation matrix to rotate the (VV)Tto the Pr1nc1pa1 Matrix

U AU
. Acr —g 0 ax oy 0
: = = = v v
ie. PT(VV)TP = (V) = §+e Aoy 0 |Where (VV)'= x ay Y
ow  ow
§ n A 3% v )lr_
cosf —sinf 0
PT can be given by [sinf cos6 0
0 0 1
U AU 1
— — 0
cosd —sinf 0 g’; g"; cosf sinf 0
sinf cosf 0 % ar O||—sinB cos6 O
0 0 1l faw aw 1 0 0 1
ag o ra' ouU
U ]
—cosH——smH —sn9+—c059 0 _R
cosf —sinf 0 gv g g’; Acr 7 U
= sig@ cog‘é? (1) acose —a—sme xS sin 6 +—cost9 0= §+ e A, 0| L& A11= 4y,
ow aw ow
a—cose—a—sme a—sm9+Wc059 Ay 3 n A
Let 5——c sf ——smH n——WsmH +—sm9
cosY (— cosf — a_ sin 8) — sin6 (— cos O — Z— sin 8)=sin H(Z—Z sin 6 + a—U cos 0)+ cosH(a—V sin 0 + a—V cos )
: _n (90U v )4
(— — —)(cosH cos6-sin 0 sin ) - 2(— + —sin § cosv =0, (ax ay) s20 — (aY + ax) sin 20 = 0 to find 6
UNIVERSITY OF TEXAS ‘“" ARLINGTON



Mathematical Foundation of Liutex

Principal Matrix and Principal Decomposition

(using a unique matrix to represent the velocity gradient tensor)
The principal tensor matrix should be

Av S+€ & | e -= 0]
VW = _g A, nb (W) = §+ e 1, 0] (RealSchur Decomposition equivalent to
0 0 A ¢ n Al

QP rotation but without coordinate rotation)
Principal decomposition

R
I 0 R/2 0] [Ae O 0] [0 € ¢
VV = _g der M =[—}f)/2 8 8 + 8 A(C)r /{) + 8 8 g = R + SC+S
| 0 0 A r
and
o 0 —-R/2 01 [ O 0 0 0 0
(VW) =[R/2 0 O0|+]|0 A, O|+]|€ 0 0|=-R+SC+sT

0 0 0 0 0 A E n O

Koloar 2007 and Li et al. 2014 have similar ideas to decompose the velocity gradient tensor
Kolat, V., Vortex identification: New requirements and limitations [J]. International Journal of Heat and Fluid Flow, (2007), 28(4): 638-652.

Li, Z., Zhang, X., He., F., Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor.
Acta Physics Sinica, 2014, 63(5): 054704, in Chines

UNIVERSITY OF TEXAS ‘“‘f
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6. Divergence of a Tensor

Divergence of velocity gradient

Ju 0v Ow]
dx OJx Ox
> a a9 odl|lou ov ow 0°u . 0%?u  9%u 0%v _ 0%v [ 0%v 09*w . 9*w = 9*w
V:-Vv = —_—,, = + + ) + ,
ox’ oy’'oz||dy o0y Oy 0x%2  9y?  0z2' 0x?2  0y? 0z%' 0x? @ 0y? 0z2
ou ov ow
Ldz 0z 0z
is a 1x3 vector and must be transposed
[0%u . 9%u . 0%u]
+ + ) _
0x2  0y? = 0z2 2
T v = 0%v  9%v Vzu
V-l = = V-Vv
[ v 9x2 ' 9y? | 9z2 VZV * v
62W+62w+62w Vw,
| 0x2  9y? @ 0z2]

Useful for understanding fluid dynamics governing equations

We use column vector only

UNIVERSITY OF TEXAS ‘“‘f
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6. Divergence of a Tensor

Divergence of velocity gradient

V- (Vo) ([a ' oy 5

V- ()] =

Forlncompre55|ble flow: V- (V)"

Useful for understanding fluid dynamics governing equations:

For incompressible flow:
V-Vo=V-Vi+ V- (V)T=

V-VB=V-VB—V- (VH)T=

dJu oOdu  0du’
dx 0y 0z
v 0dv Ov
ax 9y oz
ow OJdw Jdw

| dx OJdy 0z

—tr|=Vtr =V(V: )

=0

V- [VB +(VHT]
V- [VB — (V)]

[0%u . 0%v 0°w ]
0x%2 = 0Jdydx  0zox
0’°u . 0%v _ 0*w
dxdy  0y%2 = 0zdy
0%u 0%v | 0%w

| 0x0z 0ydz  0z2]

- Strain (symmetric)
- Vorticity (anti-symmetric)

rd (du
ax(ax+ay+

0 (du

ay (ax + dy + az)
d (ou
_£(6x+6y+

Same to use strain (6 entries in N-S) or vorticity (3 entries in my new governing equations)

UNIVERSITY OF TEXAS
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Conclusion

1. Vector and tensor are unique, but matrix is dependent on coordinate systems

2. Vector and tensor have dot, cross, and dyadic operations, but matrix only has addition,
subtraction, multiplication, transpose, inverse.

3. Vector and tensor operators are different from matrix operators.

4. Velocity gradient formula given by Wiki and western fluid dynamics textbooks is
misunderstanding and should be corrected.

5. Liutex and two other orthogonal vectors can make a rotation matrix and obtained a principal
coordinate system to get the principal matrix for velocity gradient tensor which 1s unique

6. Cauchy-Stokes decomposition should be revisited
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Thank youl!



